Polski przełom w badaniach mRNA

termedia.pl 10 miesięcy temu
Zdjęcie: Dawid Żuchowicz/Agencja Wyborcza.pl


Zespół badaczy z Uniwersytetu Warszawskiego pod kierunkiem prof. Jacka Jemielitego (CeNT) i dr hab. Joanny Kowalskiej (FUW) we współpracy z zespołem z Warszawskiego Uniwersytetu Medycznego oraz spółką spin-off UW ExploRNA Therapeutics opracował nową modyfikację mRNA.

Szersze zastosowanie technologii mRNA
W opinii profesora Jacka Jemielitego, prezesa ExploRNA, adekwatności nowej cząsteczki mogą być przełomowe dla współczesnej medycyny. Dzięki odkryciu możliwy będzie dalszy rozwój nowoczesnych terapii celowanych opartych na technologii mRNA, w tym leczenie chorób rzadkich czy projektowanie szczepionek przeciwnowotworowych.

– Dzięki tej technologii świat medycyny może myśleć o znacznie szerszych zastosowaniach mRNA – podkreśla prof. Jacek Jemielity.

– Nie mówimy już tylko o produkcji szczepionek antycovidowych, które wydają się najprostszym zastosowaniem technologii mRNA. Tak efektywnie ulegającą translacji cząsteczkę mRNA można wykorzystać do projektowania nowych terapii przeciwnowotworowych, zastosować w leczeniu chorób rzadkich oraz różnych chorób o podłożu genetycznym – dodaje.

Badacze z UW poszukiwali takiej modyfikacji cząsteczki mRNA, która pozwoli uzyskiwać jak najwięcej terapeutycznego białka przy jak najniższej dawce mRNA. Zaproponowali więc modyfikację końca 5’ mRNA, będącego skrajnym fragmentem nici RNA. Zmiana ta dotyczy pozycji, która dość często samoistnie ulega naturalnym modyfikacjom, a polega na metylacji adenozyny w pozycji N6.

Jak wyjaśniają twórcy, jest to tak zwana modyfikacja posttranskrypcyjna, bo zachodzi w komórkach już po biosyntezie mRNA. Jest ona odwracalna, a w komórkach organizmu istnieje enzym zdolny do jej usuwania (FTO). Funkcja tej naturalnej modyfikacji nie została dotychczas poznana, ale badania wskazują, iż jej obecność wiąże się z większą produktywnością mRNA.

Uniwersalne, terapeutyczne mRNA
Naukowcy zastąpili grupę metylową na znacznie większą grupę benzylową. Okazało się, iż doskonale imituje ona naturalną modyfikację pod względem własności mRNA, ale nie jest usuwalna przez enzym FTO. Dzięki temu syntetyczne mRNA jest niejako aktywowane pod względem produktywności i enzym FTO nie jest w stanie tej aktywacji wyłączyć. W praktyce pożądane białko, na produkcję którego zapisana jest instrukcja w takiej cząsteczce mRNA, jest wytwarzane w znacznie większych ilościach.

– Wprowadzona przez nas zmiana polega na przyłączeniu benzylu w określonym punkcie jednego z końców mRNA, tak zwanego kapu. Benzyl jest dołączony w charakterystycznym miejscu, w którym naturalne enzymy modyfikują mRNA dołączając do niego grupę metylową, po tym jak mRNA zostanie zsyntezowane. Te naturalne modyfikacje mRNA są odwracalne i mogą być usunięte. Zainspirowani biologią, postanowiliśmy samodzielnie zmodyfikować mRNA w tej pozycji w sposób trwały, badając, jak to wpłynie na adekwatności mRNA – wyjaśnia dr Marcin Warmiński, pierwszy autor w pracy.

Badacze nadali modyfikacji nazwę AvantCap (wł. m6Am-cap–m7GpppBn6AmpG). W trakcie badań naukowcy dowiedli, iż cząsteczka mRNA z AvantCap wykazuje w niektórych układach choćby 6-krotnie większą produktywność.

Oznacza to, iż przepis na produkcję konkretnego białka zawarty w tak zmodyfikowanej cząsteczce spowoduje powstanie ponad 6-krotnie więcej białka w porównaniu z mRNA wykorzystującym technologię zastosowaną w szczepionkach antycovidowych. Podając tak zmodyfikowane mRNA, będzie można uzyskać w organizmie efekt terapeutyczny przy znacznie niższej dawce. Co ciekawe, w pewnych specyficznych warunkach ta różnica bywa jeszcze większa (nawet 100-krotnie). Naukowcy próbowali wyjaśnić mechanizm stojący za zwiększoną produkcją białka w komórce dzięki wprowadzonej modyfikacji, ale wyniki badań nie są jeszcze jednoznaczne.

– To bardzo interesujące zjawisko, ale jeszcze nie do końca wyjaśnione. Wiemy, iż pewne naturalne modyfikacje zachodzące po transkrypcji mRNA w komórkach nadają cząsteczkom wyższy priorytet w translacji. Takie cząsteczki w pewnych warunkach są skuteczniej odkodowywane, co prowadzi do zwiększenia produkcji określonych typów białek. Wydaje się, iż nasza modyfikacja daje taki właśnie rezultat – cząsteczki uzyskują pierwszeństwo w kolejce do wytwarzania białek. Być może mRNA staje się oporne na działanie jakiegoś enzymu wygaszającego jego nadzwyczajną aktywność biologiczną, ale zweryfikowanie tego wymaga dalszych badań. Najważniejsze, iż w rezultacie modyfikacji mamy cząsteczkę mRNA o bardzo ciekawych walorach terapeutycznych – podkreśla dr hab. Joanna Kowalska.

Co istotne dla środowiska farmaceutycznego, zaobserwowane adekwatności zmodyfikowanego mRNA z AvantCap są silniejsze po ich podaniu do organizmów żywych (myszy) niż w liniach komórkowych hodowanych in vitro. Co więcej, badacze udowodnili również, iż mRNA kodujące charakterystyczne białko dla nowotworów (tzw. antygen) podane myszom chorującym na nowotwór powodowało istotne hamowanie rozwoju guza. Potwierdzenie tego w organizmie ludzkim wymaga przeprowadzenia niezwykle kosztownych i długotrwałych badań klinicznych.

Na pograniczu akademii i przemysłu
Dokonane odkrycie to rezultat kilkuletniej współpracy akademickiej oraz ExploRNA – uniwersyteckiej spółki spin-off założonej przez prof. Jacka Jemielitego i współpracowników. Profesor podkreśla, iż bez współpracy zespołów akademickiego i spółki oraz wzajemnego uzupełniania kompetencji odkrycie tej rangi nie byłoby możliwe.

– Bez wątpienia był to najbardziej skomplikowany i najbardziej kosztowny projekt w mojej karierze naukowej. Osobiście dla mnie ważne jest, by udowadniać, iż badania naukowe nie muszą być kompromisem między użytecznością i jakością naukową. Wręcz przeciwnie, istnieje doskonała synergia we współpracy akademickiej i celami spółki biotechnologicznej. Z jednej strony dzięki współpracy akademii ze spółką możemy wznieść się poza ograniczenia, z jakimi stykamy się w zespole akademickim, tworząc jeszcze lepszą naukę. Z drugiej strony, dzięki rozwijaniu wysoko rozwiniętych technologii wywodzących się bezpośrednio z badań naukowych, spółka uzyskuje istotną przewagę nad konkurencją, a uzyskane wyniki niemal na pewno znajdą praktyczne zastosowanie i będą służyć społeczeństwu. Wprawdzie do tego jeszcze długa droga, wymagająca m.in. dojrzałego systemu finansowania tego typu działań, ale wierzę, iż tak się stanie – mówi prof. Jacek Jemielity.

Odkrycie zostało objęte ochroną patentową i wylicencjonowane przez UW do spółki ExploRNA, która zajmuje się dalszym rozwojem technologii i jej wdrażaniem w praktyce.

.

Idź do oryginalnego materiału