Sztuczna inteligencja pomoże w diagnozie chorób płuc

termedia.pl 4 miesięcy temu
Zdjęcie: 123RF


Naukowcy z Politechniki Warszawskiej pracują nad wykorzystaniem AI do analizy wyników tomografii komputerowej i rentgena płuc. Narzędzie, które ma pomóc w diagnostyce chorób płuc, będzie można zintegrować z systemami już wykorzystywanymi przez lekarzy, m.in. pulmonologów i radiologów.



Naukowcy z Wydziału Matematyki i Nauk Informacyjnych PW wykorzystują możliwości sztucznej inteligencji, aby ułatwić proces interpretacji badań tomografii komputerowej (TK), która bywa wyzwaniem choćby dla doświadczonych radiologów i dostępnych algorytmów.

Skala przedsięwzięcia jest unikalna

Projektem „Godna zaufania sztuczna inteligencja wspierająca identyfikację zmian chorobowych w płucach na bazie danych obrazowych” kieruje lider zespołu MI2.AI prof. Przemysław Biecek. Multidyscyplinarny zespół ekspertów składa się za specjalistów od inżynierii oprogramowania, sztucznej inteligencji, wyjaśnialnego uczenia maszynowego, wizualizacji danych czy radiologii. Naukowcy współpracują z Polską Grupą Raka Płuca oraz Dziecięcym Szpitalem Klinicznym w Warszawie.

– Trenowanie modeli AI to gigantyczne wyzwanie, nie tylko organizacyjne, ale też inżynierskie. Dane mają olbrzymią objętość – w postaci spakowanej 40 TB. Do wytrenowania modelu potrzebna jest olbrzymia moc obliczeniowa – mówi prof. Przemysław Biecek, zaznaczając, iż skala przedsięwzięcia jest unikalna.

– Opracowywany zbiór danych PLIST będzie największą publicznie dostępną bazą danych badań CT klatki piersiowej na świecie. Pierwsza wersja modeli została już opracowana i przetestowana, w tej chwili szukamy kolejnych partnerów medycznych do współpracy nad testowaniem, wdrażaniem i dalszym rozwojem systemu – zapowiada.

AI pomoże w monitorowaniu nowotworów w obrębie klatki piersiowej

Jak wyjaśniają naukowcy, w diagnostyce chorób płuc kluczową rolę pełnią badania obrazowe. W analizie danych opisowych, towarzyszących badaniom tomografii komputerowej klatki piersiowej, pomocne są również modele językowe, takie jak m.in. GPT. Potrafią one wyciągać uporządkowane informacje z dostępnych historycznych opisów badań TK. Takie informacje można następnie wykorzystać w trenowaniu modeli rozpoznających określone zmiany chorobowe, np. w postaci guza czy rozedmy.

Integracja modeli dla wizji komputerowej z modelami tekstowymi pozwala zautomatyzować proces manualnego opisywania wyników. Dzięki interfejsowi użytkownika lekarz radiolog będzie mógł prowadzić konwersację z modułem sztucznej inteligencji.

Moduł ten skróci czas analizy obrazu potrzebny do wykrycia zmian i uczyni proces oceny obrazu bardziej przejrzystym. System został opracowany tak, aby umożliwić rozbudowę modelu bazowego o moduły wykrywające szeroką gamę cech. Moduł AI dostarczy także wyjaśnień obrazowych i tekstowych, które pozwolą na prześledzenie ścieżki decyzyjnej stojącej za konkretną diagnozą, a także zostanie zweryfikowany pod kątem efektywnej współpracy z radiologiem.

W porozumieniu z lekarzami zostały opracowane trzy unikalne zbiory danych, które będą udostępnione też innym zespołom badawczym pracującym nad modelami dla diagnostyki chorób klatki piersiowej.

Przeczytaj także: „RPP: Pacjent musi wyrazić zgodę na zastosowanie AI w badaniu lub leczeniu” i „Sztuczna inteligencja – prawdziwy kłopot”.

Idź do oryginalnego materiału